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Abstract In this paper, we study the geometric structure of the 2D elasticity tensor space
using the representation theory of linear groups. We use Kelvin’s notation system in which
O(2) acts on the 2D stress tensors as subgroup of O(3). We present the method in the simple
case of the stress tensors and we recover Mohr’s circle construction. Next, we apply it to the
elasticity tensors. We explicitly provide a linear frame of the elastic tensor space in which the
representation of the rotation group is decomposed into irreductible subspaces. Thanks to
five independent invariants chosen among six, an elasticity tensor in 2D can be represented
by a closed line or, in degenerated cases, by a circle or a point. The elasticity tensor space,
parameterized with these invariants, consists in the union of a manifold of dimension 5,
two volumes and a surface. The complete description requires five polynomial invariants,
two linear, two quadratic and one cubic. We reveal the physical and geometrical meaning
of these invariants and we propose a simple method to determine the elastic behaviour of
an anisotropic material of which the symmetry is not known a priori, thanks to invariant
measures of the lack of symmetry with respect to class of materials.
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1 Introduction

In d-dimensional linear elasticity, the stress components σij and the strain components εkl

are related by the constitutive law σij = Cijklεkl , with the usual symmetry conditions:

Cijkl = Cjikl = Cijlk = Cklij .

Thus any elastic material is characterized by a system of elastic coefficients C =
(Cijkl)1≤i,j,k,l≤d but this correspondence is not one-to-one because these coefficients are
linked to the choice of a particular orthonormal frame. A changing of proper orthonormal
frame, i.e. a rotation matrix r of elements r

p

i , modifies the components of the elasticity
tensor according to the tensorial rule:

C ′
ijkl = r

p

i r
q

j rm
k rn

l Cpqmn. (1)

In the modern language of differential geometry, it defines an action of the special orthog-
onal group SO(d) of R

d on the vector space E(d) = S
2
S

2
R

d of the elastic coefficients sys-
tems C. As the assignment (1) of the C ′ = (C ′

ijkl) to the C = (Cpqmn) is linear, we said that
it is a linear representation of SO(d) into E(d):

C ′ = ρ(r)C. (2)

To a given elasticity tensor corresponds the set of all elastic coefficient systems C ′ repre-
senting it:

E = {
C ′ ∈ E(d) | ∃r ∈ SO(d) s.t. C ′ = ρ(r)C

}
(3)

called the SO(d)-orbit of C (or simpler the orbit of C). To each elasticity tensor corresponds
an orbit. The space EL(d) of the elasticity tensors, that can be assimilated to the orbit space,
is often called the quotient space of E(d) by the group SO(d) and is denoted E(d)/SO(d).
We want to study its underlying geometric structure. In the present work, we treat the planar
case (d = 2) although some results are more general and, as we hope, our method could be
generalized to the case d = 3. Thus, characterizing the elastic materials amounts to find a
convenient parameterization of this set by local charts.

Powerful tools are the theory of linear representation of groups [32] and the theory of
invariants [24], particularly the simplest ones, the polynomial invariants. The analysis of
the symmetries becomes strongly easier using a matrix presentation of the calculus and a
suitable scaling of the components of the elasticity tensor. Voigt notation [41] consists in
collecting the stress and strain tensor components into n-column vectors and the elasticity
tensor’s ones into a n×n symmetric matrix (n = 3 in 2D and n = 6 in 3D). Although widely
used in the literature, Voigt’s notation is not relevant for an easy study of symmetries. Even
if it is older and previous to the modern tensorial calculus, Kelvin’s system [33, 34] must
be preferred. It has been introduced and used again by Walpole [42], Rychlewski [29, 30],
Mehrabadi and Cowin [19, 20]. This formulation is particularly efficient because it allows
recovering the elastic law as a simple product of a matrix by a column vector of R

n in a way
such that the concepts of Euclidean norm and Euclidean scalar product can be transported.
The calculations are simplified and the changing of elasticity tensor’s components through a
changing of proper orthonormal frame of Rd is represented by an orthogonal transformation
of R

n. It allows a decomposition into irreductibles [32] of the space E(d). The real valued
functions that are invariant over each orbit characterize the elasticity tensor in an intrinsic
way. Following a fundamental theorem (Hilbert’s basis theorem), the set of polynomial in-
variants is generated by a finite number of them [17, 18]. The difficulty consists in finding a
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minimum set of generators (or functional basis), that needs detecting the dependency rela-
tions (syzygies). The knowledge of these invariants allows determining to which orbits the
system of elastic coefficients belongs. In the 3D case, the decomposition into irreductibles
for the orthogonal group is well known and used by many authors. Among them, without
being exhaustive, can be quoted Pratz [28], Cowin [9], Boehler, Kirillov Jr. and Onat [5],
Ostrasablin [26, 27]. There are 5 irreductibles subspaces, E0 and E

′
0 of dimension 1, E5 and

E
′
5 of dimension 5, and E9 of dimension 9. Finding a systems of generators separating the

orbits is a harder task. The minimum number is 18. A strategy followed by some authors
[1, 35] consists in building systematically the polynomial invariants of increasing degree p.
Moreover, as it will be seen further, this way would require following the method up to
degree 10.

Boehler and coworkers paper [5] is probably one of the more achieved insofar as it takes
into account the decomposition into irreductibles. To the primary invariants of each sub-
space, one must add the joint invariants revealing the coupling between them. Embedding
the elasticity tensor into a 37-dimensional Euclidian space, Boehler and his coworkers pro-
pose 39 generators, among them 15 primary invariants: a linear one for each subspace E0

and E
′
0, two invariants for each subspace E5 and E

′
5, and nine invariants for E9 of which the

degrees run from p = 2 to 10. The main breakthrough of this work is the construction of
primary invariants of E9. It remains finding the syzygies because a minimal number of 6 is
expected. Concerning the 24 joint invariants, a minimum number of 3 is expected between
E5 and E

′
9, 3 between E

′
5 and E

′
9, and 6 between E5, E

′
5 and E

′
9. It remains to determine

the numerous syzygies between the 24 joint invariants. Another point of view adopted by
Bóna, Bucataru and Slawinski [6] is parameterizing directly the elasticity tensor space with
18 parameters on the ground of Kelvin’s eigendecomposition [34]. Based also on eigen-
value problems, Betten proposed a simple method to obtain easily invariants of the elasticity
tensors [4].

Relatively deconnected from the determination of the invariants, another topics of prac-
tical interest is the analysis of the symmetry group of a given anisotropic material, that is
the closed subgroup of O(d) of the orthogonal transformations leaving invariant all the elas-
tic coefficients. At each symmetry group corresponds a class of materials. As proved again
recently in [8, 14], there is only 8 possible symmetry groups in 3D: I for the triclinic mate-
rials, Z2 for the monoclinic materials, D2 for the orthotropic materials, D3 for the trigonal
materials, D4 for the tetragonal materials, O(2) for the transversely isotropic materials, O

for the cubic materials and O(3) for the isotropic materials. Moreover, it is worth noting that
the study of the symmetry groups of a second gradient medium was made in [2].

In the literature, the studies are generally made in a basis naturally associated to the
symmetry group, that reduces the elasticity tensor to a simple form which renders easier
the calculations. An open question is determining the elastic behaviour of an anisotropic
material of which the symmetry is not known a priori. It is of great interest for geomaterials,
composite and biological materials. Methods to determine the closest class of symmetry
of a given material and the distance to it is discussed by Bucataru et al. [7] and François
et al. [15]. Other methods of accomplishing this objective has been proposed by Cowin and
coworkers in [10, 11] and applied in [43]. Another challenge of the analysis of the elasticity
tensor’s invariants concerns the damage models. Indeed, the initiation and propagation of
the defects in a material leads generally to a lack of symmetry of the material properties.
Thus the damage theories rarely involve the representation of the symmetry group in the
modeling, excepted in a few sporadic attempts [15, 16, 25].

If the studies in 3D deserve to be improved, the theoretical analysis of the 2D case, inter-
esting per se, is simpler but nevertheless not trivial. Curiously, not much attention has been
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paid in the literature to it, except Vannucci et al. [37], Vincenti et al. [40], Vannucci [36] and
Vannucci et al. [38], following the polar method proposed by Verchery [39] using SU(2).
The aim of the present paper is to study the 2D case by an alternative method. It is structured
as follows. In Sect. 2, Kelvin’s representation and its advantages are presented. Section 3 re-
calls the parameterization of the stress tensor space according to Mohr’s circle construction
and useful for the sequel. In Sect. 4, the elasticity tensor parameterization inherits from the
stress tensor one due to a simple matrix calculus. We recover Weyl’s decomposition in irre-
ductibles [3, 31]. There are 4 irreductible subspaces, E0 and E

′
0 of dimension 1, E2 and E4

of dimension 2. We propose 5 generators, among them 4 primary invariants (a linear one for
each subspace E0 and E

′
0, a quadratic one for each subspace E2 and E

′
4) and a joint invariant

between E2 and E
′
4. In Sect. 5, the previous invariants allows us to reveal the underlying

geometry of the elasticity tensor space EL(2), consisting in a 5-dimensional manifold ELg

(corresponding to the generic orbits) of which the boundary is composed of two volumes
EL2 and EL4 intersecting following a surface ELiso (corresponding to the isotropic elas-
ticity tensors). In Sect. 6, we determine the possible symmetry groups. For each one, we
obtain an invariant measure of the lack of symmetry, revealing the physical meaning of the
invariants previously determined and providing an original method to determine the elastic
behaviour of an anisotropic material of which the symmetry is not known a priori. Con-
versely to [7], we obtain directly the invariance without minimization. In Sect. 7, we discuss
the previous invariant measures in terms of Euclidean geometry and interpret them as length
and area. In Sect. 8, we compare the invariants for the actions of Z2, O(2) and SO(2) onto
E(2). Both orbits for SO(2) and O(2) are the same but the choice of the generators of their
respective invariants depends on the way in which the group acts on the orbit.

2 Kelvin’s Representation

In the planar case, Voigt’s representation of the constitutive law is:
⎛

⎜
⎝

σ11

σ22

σ12

⎞

⎟
⎠ =

⎛

⎜
⎝

C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212

⎞

⎟
⎠

⎛

⎜
⎝

ε11

ε22

2ε12

⎞

⎟
⎠ . (4)

A more convenient representation, due to Kelvin [33, 34], is:
⎛

⎜
⎝

σ11

σ22√
2σ12

⎞

⎟
⎠ =

⎛

⎜
⎝

C1111 C1122

√
2C1112

C2211 C2222

√
2C2212√

2C1211

√
2C1222 2C1212

⎞

⎟
⎠

⎛

⎜
⎝

ε11

ε22√
2ε12

⎞

⎟
⎠ . (5)

According to this representation, the stress component system σ = (σij ) will be represented
by s ∈ R

3 with s1 = σ11, s2 = σ22, s3 = √
2σ12 (and similar representation e ∈ R

3 for the
strain component system), while the elastic coefficient system C will be represented by the
symmetric 3 × 3 matrix c ∈ S

2
R

2 such that

c11 = C1111, c12 = C1122, c13 = √
2C1112,

c22 = C2222, c23 = √
2C2212, c33 = 2C1212.

(6)

The constitutive law is recast in a matrix relation:

s = ce. (7)
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Generalization to an arbitrary dimension d is obvious with e, s ∈ R
d(d+1)/2 and c ∈

S2Rd(d+1)/2, according to the index contraction rule:

si = σii , i = 1, . . . , d

s3+ d(d+1)
2 −(i+j)

= √
2σij i, j = 1, . . . , d, i < j.

(8)

Now, let us show immediately an advantage of this new representation

Theorem 2.1 In Kelvin representation, any orthogonal matrix r ∈ O(d) acts on σ ∈ S
2
R

d

as an orthogonal matrix R ∈ O(d(d + 1)/2) acting on s ∈ R
d(d+1)/2.

Proof The space S
2
R

d is equipped with the canonical scalar product:

〈σ, τ 〉 = σ : τ = σij τij .

Accounting for the symmetry of the stress tensor, we see that

〈σ, τ 〉 =
∑

1≤i≤d

σiiτii +
∑

1≤i<j≤d

2σij τij .

If σ, τ ∈ S
2
R

d are respectively represented by s, t ∈ R
d(d+1)/2, equipped with the canonical

scalar product, one has, owing to the index contraction rule (8):

〈σ, τ 〉 =
∑

1≤i≤d

σiiτii +
∑

1≤i<j≤d

(
√

2σij )(
√

2τij ) =
∑

1≤n≤ d(d+1)
2

sntn = 〈s, t〉,

which defines an isomorphism between the Euclidean spaces S
2
R

d and R
d(d+1)/2.

For a change of orthonormal frame r ∈ O(d), such that

r
p

i r
q

i = δpq, (9)

it follows that

σ ′
ij = r

p

i r
q

j σpq, (10)

which gives

〈
σ ′, τ ′〉 = σ ′

ij τ
′
ij = r

p

i rr
i r

q

j rs
j σpqτrs .

Consequently, the scalar product is conserved:

〈
σ ′, τ ′〉 = δprδqsσpqτrs = σpqτpq = 〈σ, τ 〉.

Because of the isomorphism noted above, this yields

〈
s ′, t ′

〉 = 〈s, t〉.
Thus, there exists R ∈ O(d(d + 1)/2) such that s ′ = Rs and t ′ = Rt . �
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3 Parameterization of the Stress Tensor Space

Let us consider a change of orthonormal coordinates x ′ = rT
θ x with the rotation matrix

rθ =
(

cos θ sin θ

− sin θ cos θ

)

. (11)

The geometrical representation of planar symmetric tensors by circles is due to Culmann
[12] for the 2D version and to Mohr for the 3D case ([21–23]). The tensorial rule (10) for
the stress tensor gives the well known formulas:

σ ′
11 = cos2 θσ11 + sin2 θσ22 + 2 sin θ cos θσ12,

σ ′
22 = sin2 θσ11 + cos2 θσ22 − 2 sin θ cos θσ12,

σ ′
12 = − sin θ cos θ(σ11 − σ22) + (

cos2 θ − sin2 θ
)
σ12,

that can be stated in the Kelvin representation as the relation s ′ = Rs:

s ′
1 = cos2 θs1 + sin2 θs2 + √

2 sin θ cos θs3,

s ′
2 = sin2 θs1 + cos2 θs2 − √

2 sin θ cos θs3,

s ′
3 = −√

2 sin θ cos θ(s1 − s2) + (
cos2 θ − sin2 θ

)
s3.

Theorem 2.1 proves that the transformation R representing rθ is orthogonal. This property
appears using well-known formulas expressing trigonometric functions of argument θ into
ones of argument 2θ . In matrix form, we have s ′ = Rs with

R =

⎛

⎜⎜
⎝

1
2 (1 + cos(2θ)) 1

2 (1 − cos(2θ)) 1√
2

sin(2θ)

1
2 (1 − cos(2θ)) 1

2 (1 + cos(2θ)) − 1√
2

sin(2θ)

− 1√
2

sin(2θ) 1√
2

sin(2θ) cos(2θ)

⎞

⎟⎟
⎠ . (12)

For representing a spatial rotation of angle φ and axis defined by the unit vector n, let us
recall the Rodrigues formula:

Rφ = exp(φJ ) = I + sinφJ + (1 − cosφ)J 2, (13)

where I is the identity of R
3 and J is the 3 × 3 skew-symmetric matrix of axial vector n:

J =
⎛

⎜
⎝

0 −n3 n2

n3 0 −n1

−n2 n1 0

⎞

⎟
⎠ . (14)

We can verify that R is a rotation of angle 2θ and axial vector:

n = 1√
2

⎛

⎜
⎝

1

1

0

⎞

⎟
⎠ . (15)

Further, the rotation R representing rθ will be denoted R2θ . Thus, the relation

s ′ = R2θ s (16)

gives the harmonic decomposition of s ′:
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s ′
1 = s1 + s2

2
+ s1 − s2

2
cos(2θ) + s3√

2
sin(2θ),

s ′
2 = s1 + s2

2
− s1 − s2

2
cos(2θ) − s3√

2
sin(2θ),

s ′
3 = − s1 − s2√

2
sin(2θ) + s3 cos(2θ).

It is limited to terms up to 2θ because representing the tensorial rule for 2-rank tensors. This
decomposition suggests to introduce the following scalars:

p = s1 + s2√
2

, κ = s1 − s2√
2

, (17)

and linearly independent vectors of R
3:

e1 = n, e2 = 1√
2

⎛

⎜
⎝

1

−1

0

⎞

⎟
⎠ , e3 =

⎛

⎜
⎝

0

0

1

⎞

⎟
⎠ .

Thus relation (16) yields

s ′ = pe1 + [
κ cos(2θ) + s3 sin(2θ)

]
e2 + [−κ sin(2θ) + s3 cos(2θ)

]
e3.

The decomposition of s is obtained by considering the value for θ = 0:

s = pe1 + κe2 + s3e3.

In the new orthogonal frame (e1, e2, e3), the tensorial rule becomes
⎛

⎜
⎝

p′

κ ′

s ′
3

⎞

⎟
⎠ =

⎛

⎜
⎝

1 0 0

0 cos(2θ) sin(2θ)

0 − sin(2θ) cos(2θ)

⎞

⎟
⎠

⎛

⎜
⎝

p

κ

s3

⎞

⎟
⎠ . (18)

With this, we have retrieved the irreductible decomposition of the representation of SO(2)

[32]. On the first irreductible subspace, spanned by e1 = n, the representation is trivial and
we find a first invariant, p. On the second one, spanned by e2 and e3, the group SO(2) acts
as r2θ and it is easy to find an invariant, for instance,

q2 = 1

2

(
κ2 + (s3)

2
)
.

Because of the isomorphism between S
2
R

2 and R
6 and upon using the index contraction

rule (8), we obtained the two invariants of the planar stress tensor (where q is supposed to
be non negative):

p = σ11 + σ22√
2

, (19)

q2 =
(

σ11 − σ22

2

)2

+ (σ12)
2. (20)

For given values of the constants p and q > 0, these two equations define a generic orbit. It
is easy to see that the orbit is a circle of radius q and centre given by

σ11 = σ22 = p√
2
, σ12 = 0. (21)
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If q = 0, Eq. (20) implies σ11 = σ22 and gives a third invariant σ12 = 0. The orbit is non
generic and reduced to the point (21). In modern language of differential geometry, the set
of the planar stress tensor is the orbit manifold S

2
R

2/SO(2), union of two parts:

– the set of the generic orbits, which are circles, is a surface parameterized by local coordi-
nates (p, s) ∈ R × R

∗+
– the set of the singular orbits, which are points, is a straight line (σ11 − σ22 = σ12 = 0)

parameterized by p ∈ R.

The orbit manifold is not pure [13], with a local dimension equal to 2 or 1 according to
the orbit being generic or not. With this, we have translated into the modern geometrical
language the original representation by Mohr of the planar stress tensors by circles in the
(σ11, σ12) axis, defined by the equation

(σ11 − a)2 + (σ12)
2 = q2,

with a = p /
√

2, obtained by elimination of σ22 between Eqs. (19) and (20).

4 Decomposition in Irreductibles for the Elasticity Tensor

To reveal the underlying geometric structure of the elasticity tensor space, we shall use the
same method as for the stress tensors. The first step consists in finding an irreductible de-
composition of the representation ρ(r) of SO(2) in the space E(2) = S

2
S

2
R

2 of the elastic
coefficient systems. Next, we can parameterize the space EL(2) = E(2)/SO(2) of the elas-
ticity tensors. The key-idea is to work in the new orthogonal frame (e1, e2, e3) because of
the change of variable s̃ = P −1s, namely,

⎛

⎜
⎝

p

κ

s3

⎞

⎟
⎠ =

⎛

⎜
⎝

1√
2

1√
2

0
1√
2

− 1√
2

0

0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

s1

s2

s3

⎞

⎟
⎠ . (22)

In the new variables ẽ = P −1e and s̃ = P −1s, the constitutive law has the form

s̃ = c̃ẽ

with c̃ = P −1 c P . Owing to (22), we obtain the explicit form of c̃:

c̃ =
⎛

⎜
⎝

c̃11 η α

η c̃22 −2β

α −2β c̃33

⎞

⎟
⎠ , (23)

where:

η = c11 − c22

2
, (24)

α = c23 + c13√
2

, (25)

β = c23 − c13

2
√

2
. (26)
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c̃11 = 1

2
(c11 + c22 + 2c12), (27)

c̃22 = 1

2
(c11 + c22 − 2c12), (28)

c̃33 = c33. (29)

In order to introduce additional relevant variables, let us observe that in the new variables
the tensorial rule, given by (18), can be written as s̃ ′ = R̃2θ s̃ with

R̃2θ =
(

1 0

0 r2θ

)

. (30)

For sake of convenience the symmetric matrix c̃ is decomposed by blocks as:

c̃ =
(

c̃11 ṽT

ṽ Ã

)

, (31)

where ṽ ∈ R
2 and Ã ∈ S

2
R

2. Because of the isomorphism of Theorem 2.1, an elastic coeffi-
cient system is represented by the matrix c̃ ∈ S2R2. Combining (7), (16) and ẽ′ = R̃2θ ẽ leads
to the tensorial rule of the elasticity tensor in the matrix form:

c̃′ = R2θ c̃ (R2θ )
T . (32)

Combining (30), (31) and (32) leads to

c̃′ =
(

c̃11 (r2θ ṽ)T

r2θ ṽ r2θ ÃrT
2θ

)

. (33)

The constitutive law is isotropic if ṽ = 0 and Ã is an isotropic matrix. In this case, Ã is
proportional to the identity matrix I :

Ã = 2μI.

The isotropic cases are characterized by vanishing values of α, β , η and

2γ = 1

2
(c̃33 − c̃22) = 1

4
(2c33 + 2c12 − c11 − c22). (34)

Moreover, introducing the quantity

2μ = 1

2
(c̃33 + c̃22) = 1

4
(c11 + c22 − 2c12 + 2c33), (35)

the matrix (23) takes the form

c̃ =
⎛

⎜
⎝

2(λ + μ) η α

η 2(μ − γ ) −2β

α −2β 2(μ + γ )

⎞

⎟
⎠ , (36)

where we define

λ = 1

8
(c11 + c22 + 6c12 − 2c33). (37)
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Obviously, λ and μ are interpreted as Lamé’s coefficients. The matrix (36) can be additively
decomposed into its isotropic part (obtained by putting α = β = γ = η = 0):

c̃0 =
⎛

⎜
⎝

2(λ + μ) 0 0

0 2μ 0

0 0 2μ

⎞

⎟
⎠ , (38)

and a deviatoric part

c̃d =
⎛

⎜
⎝

0 η α

η −2γ −2β

α −2β 2γ

⎞

⎟
⎠ . (39)

Under the action of SO(2), the isotropic part (38) is invariant while the deviatoric one (39)
is modified according to the tensorial rule in (33). The relation ṽ′ = r2θ ṽ gives

(
η′

α′

)

=
(

cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

)(
η

α

)

. (40)

The relation Ã′ = r2θ ÃrT
2θ suggests to represent the symmetric matrix Ã ∈ S

2
R

2 by a vector
ã ∈ R

3 (as the stress tensor σ ∈ S
2
R

2 was represented by s ∈ R
3). By analogy with (17), its

components are

ã1 = Ã11 + Ã22√
2

= 0, ã2 = Ã11 − Ã22√
2

= −2
√

2γ, ã3 = √
2Ã33 = −2

√
2β.

Theorem 2.1 proves that the transformation R representing r2θ is orthogonal but, by analogy
with Sect. 3, R = R4θ = exp(4θj (n)) with n given in (15). Replacing 2θ by 4θ and s by ã

in (18), we obtain
(

γ ′

β ′

)

=
(

cos(4θ) sin(4θ)

− sin(4θ) cos(4θ)

)(
γ

β

)

. (41)

In the new variables of E(2), the tensorial rule now has the form
⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ′

2μ′

η′

α′

γ ′

β ′

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 cos(2θ) sin(2θ) 0 0

0 0 − sin(2θ) cos(2θ) 0 0

0 0 0 0 cos(4θ) sin(4θ)

0 0 0 0 − sin(4θ) cos(4θ)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ

2μ

η

α

γ

β

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (42)

We have obtained the irreductible decomposition of the representation of SO(2) into
stable subspaces of E(2). There are two irreductible subspaces E0 and E

′
0 for which the

representation is trivial. For each of them, there is an invariant, λ for E0 and μ for E
′
0. On

the third irreductible E2, the group SO(2) acts as r2θ and it is easy to find an invariant, for
instance,

I 2
2 = η2 + α2. (43)

On the last one E4, the group SO(2) acts as r4θ and it is easy to find an invariant, for instance,

I 2
4 = γ 2 + β2. (44)
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If we consider the irreductibles separately, the orbit O2 in E2 is the circle of Eq. (43) and
the orbit O4 in E4 is the circle of Eq. (44). If we consider the angle θ as a time evolution
parameter and the corresponding motion of a particle on each circle, we see that the particle
on O4 runs twice as fast as the one on O2. In fact, the orbits O2 and O4 are “coupled”. To
take into account this phenomenon, we need another invariant. To find it, it is easier to work
with complex numbers z2 = η + iα and z4 = γ + iβ . The group action reads:

z′
2 = e−2iθ z2, z′

4 = e−4iθ z4.

Eliminating θ between both relations gives
(
z′

2

)2
z̄′

4 = z2
2z̄4,

and leads to the following complex invariant:

ζ = z2
2z̄4 = (η + iα)2(γ − iβ). (45)

However, this new invariant is not independent of the other ones because

|ζ |2 = I 2
4 I 4

2 . (46)

With the decomposition ζ = 
ζ + i�ζ = ζr + iζi , we obtain, in addition to λ,μ, I2 and I4,
two new invariants:

ζr = 2αβη + γ
(
η2 − α2

)
, (47)

ζi = 2αγ η − β
(
η2 − α2

)
, (48)

linked to the other ones by the relation

ζ 2
r + ζ 2

i = I 2
4 I 4

2 . (49)

5 Parameterization of the Elasticity Tensor Space

Using the decomposition in irreductibles, we may characterize the planar elasticity tensors
by a system of five invariants, the first four being (where I2 and I4 are supposed to be non
negative)

λ = 1

8
(c11 + c22 + 6c12 − 2c33),

2μ = 1

4
(c11 + c22 − 2c12 + 2c33),

I 2
2 = 1

4
(c11 − c22)

2 + 1

2
(c23 + c13)

2,

(50)

I 2
4 = 1

64
(2c33 + 2c12 − c11 − c22)

2 + 1

8
(c23 − c13)

2, (51)

and the last one chosen among the two following invariants:

ζr = 1

32

[
8
(
(c23)

2 − (c13)
2
)
(c11 − c22)

+ (2c33 + 2c12 − c11 − c22)
(
(c11 − c22)

2 − 2(c23 + c13)
2
)]

, (52)
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ζi = 1

8
√

2

[
(c23 + c13)(2c33 + 2c12 − c11 − c22)(c11 − c22)

− (c23 − c13)
(
(c11 − c22)

2 − 2 (c23 + c13)
2
)]

. (53)

The knowledge of these invariants is sufficient to determine the elasticity tensor by con-
structing the orbit in two steps:

– the elastic coefficients cij being given in a particular frame of R
3 (attached to the experi-

mental testing device), the values of the invariants λ,μ, I2, I4 and ζr or ζi are calculated
by expressions (37), (35), (50), (51) and (52) or (53).

– In the space of elastic coefficients cij , the orbit is defined by Eqs. (37), (35), (50), (51)
and (52) or (53) with the values of the invariants, λ,μ, I2, I4 and ζr or ζi determined at
the first step.

The set EL(2) of the elasticity tensor c is the orbit space E(2)/SO(2), the union of four
parts (the first one being the set of the generic orbits):

– If I2 > 0 and I4 > 0, the corresponding orbits are closed lines (something like lim-
nescates). Their set is a 5-dimensional manifold ELg which can be parameterized by
local coordinates (λ,μ, I2, I4, ζr ) or (λ,μ, I2, I4, ζi).

– If I2 = 0 and I4 > 0, then ζr = ζi = 0 because of (49) and there are two new invariants
(γ = β = 0) but only five are independent (for instance λ,μ, I4, β = 0 and γ = 0). The
corresponding orbits are circles of radius I4. Their set is a volume EL4 which can be
parameterized by local coordinates (λ,μ, I4) (if we set aside the two null invariants).

– If I2 > 0 and I4 = 0, then ζr = ζi = 0 and there are two new invariants (α = η = 0) and a
set of five independent invariants. The corresponding orbits are circles of radius I2. Their
set is a volume EL2 which can be parameterized by local coordinates (λ,μ, I2).

– If I2 = I4 = 0, there are four new invariants (α = β = γ = η = 0) and a set of six in-
dependent invariants. The corresponding orbits are points. Their set is a surface ELiso

which can be parameterized by local coordinates (λ,μ). Physically, each point represents
an isotropic elastic constitutive law characterized by Lamé’s coefficients λ and μ.

Using the index contraction rule (6), we see that the five fundamental invariants of the
elasticity tensor, expressed in original notations for 4-rank tensors are

λ = 1

8
(C1111 + C2222 + 6C1122 − 4C1212), (54)

2μ = 1

4
(C1111 + C2222 − 2C1122 + 4C1212), (55)

I 2
2 = 1

4
(C1111 − C2222)

2 + (C2212 + C1112)
2, (56)

I 2
4 = 1

64
(4C1212 + 2C1122 − C1111 − C2222)

2 + 1

4
(C2212 − C1112)

2, (57)

and one chosen among the following two:

ζr = 1

32

[
16

(
(C2212)

2 − (C1112)
2
)
(C1111 − C2222)

+ (4C1212 + 2C1122 − C1111 − C2222)
(
(C1111 − C2222)

2 − 4 (C2212 + C1112)
2
)]

,

(58)
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ζi = 1

8

[
(C2212 + C1112)(4C1212 + 2C1122 − C1111 − C2222)(C1111 − C2222)

− (C2212 − C1112)
(
(C1111 − C2222)

2 − 4 (C2212 + C1112)
2
)]

. (59)

6 Invariant Measure of the Lack of Symmetry with Respect to Classes of Materials

In the modern language of the theory of invariants, the previous results can be summa-
rized by noting that the algebra R[E(2)]SO(2) of the invariants of the elasticity tensors
is generated by a finite number of polynomials, i.e., R[E(2)]SO(2) = R[λ,μ, I2, I4, ζi] =
R[λ,μ, I2, I4, ζr ]. From a mathematical viewpoint, the choice of ζi or ζr is arbitrary be-
cause, together with the four other invariants, they generate the same algebra, according to
the existence of the syzygy (46) and there is no relevant argument which prefers one over
the other. The aim of the present section is to determine the possible isotropy groups of
the elastic materials, usually called symmetry groups in anisotropic elasticity. To each one
corresponds a class of material. A symmetry group is a closed subgroup of the Lie group
O(2), then it is O(2) itself or a finite group. While in 2D there are 8 symmetry groups, in
3D it remains only 4: I for the general materials, Z2 for the monoclinic materials, D4 for
the tetragonal materials and O(2) for the isotropic materials. Indeed, in 3D, when a material
has reflexion symmetries about two orthogonal planes, it has a reflexion symmetry about
a third plane orthogonal to the two former ones. Similarly, in 2D, when a material has a
reflexion symmetry about a straight line, it has a reflexion symmetry about the orthogonal
straight line. Thus, if a material is monoclinic, it is orthotropic. Also when passing from 3D
to 2D elastic materials, the tetragonal material degenerates into the cubic materials and the
transversely isotropic materials into the isotropic ones. No trigonal symmetry is possible in
2D because a monoclinic material is automatically orthotropic. A 2D material is not merely
a particular case of a 3D material.

Incidently, we obtain invariant measures of the lack of symmetry with respect to these
symmetry groups. One of them is ζi which is relevant to quantify in an invariant way the
lack of orthotropy. This is a good reason to prefer the use of ζi as generator of the algebra
of the invariant of the elasticity tensors rather than ζr .

6.1 Monoclinic Material

An elastic material for which the isotropy group contains one reflexion about a straight line
� is said to be monoclinic. In 2D, it is known that it contains also the reflexion about the
straight line orthogonal to �, then the material is said to be orthotropic (or rhombic). In fact,
the concepts of monoclinic and orthotropic materials are identical in 2D. We shall verify this
fact latter on. Let a unit vector of inclination angle ϕ with respect to the x1-coordinate axis
be given by

nϕ =
(

cosϕ

sinϕ

)

.

The reflection about its orthogonal straight line � is the orthogonal matrix

mϕ = I − 2 nϕ nT
ϕ = mT

ϕ = m−1
ϕ =

(
− cos(2ϕ) − sin(2ϕ)

− sin(2ϕ) cos(2ϕ)

)

.

Following Theorem 2.1, it is represented in the Kelvin representation by an orthogonal ma-
trix Mϕ ∈ O(3) acting on s ∈ R

3. It is easy to verify that
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Mϕ =

⎛

⎜⎜
⎜⎜
⎝

cos2(2ϕ) sin2(2ϕ) 1√
2

sin(4ϕ)

sin2(2ϕ) cos2(2ϕ) − 1√
2

sin(4ϕ)

1√
2

sin(4ϕ) − 1√
2

sin(4ϕ) − cos(4ϕ)

⎞

⎟⎟
⎟⎟
⎠

.

As in Sect. 4, we work in the new orthogonal frame (e1, e2, e3) because of the change of
variable (22). In the new variables s̃ ′ = P −1s ′ and s̃ = P −1s, the reflection has the form

s̃ ′ = M̃ϕs̃

with M̃ϕ = P −1 Mϕ P . Owing to (22), we obtain the explicit form of M̃ϕ :

M̃ϕ =
⎛

⎜
⎝

1 0 0

0 cos(4ϕ) sin(4ϕ)

0 sin(4ϕ) − cos(4ϕ)

⎞

⎟
⎠ .

It is worth noting that

M̃ϕ =
(

1 0

0 −m2ϕ

)

. (60)

Hence we use the decomposition by blocks (31). As in Sect. 4 for the rotations, the action
of the reflexion transforms the elastic tensor into

c̃′ = M̃ϕc̃(M̃ϕ)
T . (61)

Combining (31), (60) and (61) we find

c̃′ =
(

c̃11 (−m2ϕṽ)T

−m2ϕṽ m2ϕÃmT
2ϕ

)

. (62)

The elastic material is monoclinic if the elastic coefficients are invariant under a reflection,
or equivalently if

ṽ = −m2ϕṽ, (63)

Ã = m2ϕÃmT
2ϕ. (64)

According to (36), condition (63) may be written as
(

η

α

)

=
(

cos(4ϕ) sin(4ϕ)

sin(4ϕ) − cos(4ϕ)

)(
η

α

)

. (65)

or, equivalently,

z2 = e4iϕ z̄2. (66)

According to (36), condition (64) may be written as
(

γ

β

)

=
(

cos(8ϕ) sin(8ϕ)

sin(8ϕ) − cos(8ϕ)

)(
γ

β

)

(67)

or, equivalently,
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z4 = e8iϕ z̄4. (68)

Eliminating ϕ between (66) and (68) leads to the condition

z2
2z̄4 = (z̄2)

2z4,

that is

ζ = ζ̄ ,

or

ζi = 0, (69)

which is necessary and sufficient for the material to be monoclinic. If this condition is satis-
fied, the orientation of the unit vector nϕ defining the reflexion can be deduced from (65):

ϕ = tan−1

(
α

η

)
.

6.2 Orthotropic Material

It is worth noting that if (66) and (68) are valid for an angle ϕ, they are also valid for the
angle ϕ + π/2. In other words, if the material is monoclinic, it is orthotropic. Moreover, as
the material is orthotropic when ζi vanishes, ζi is an invariant measure of the lack of or-
thotropy. The larger ζi becomes, the less the material is orthotropic. This invariant should be
considered by the experimentators when intending to identify the symmetries of a material
that are not known a priori. We observe that the study of the orthotropic materials reveals
the physical meaning of the joint invariant ζi .

6.3 Tetragonal Material

Let us follow this study of the class of materials by considering an orthotropic material for
which the isotropy group contains also the reflection about a third straight line orthogonal to
the unit vector nψ of inclination angle ψ = ϕ +π/4. Such a material is said to be tetragonal.
Applying condition (66) to the angle ψ gives

z2 = e4iψ z̄2 = e4iϕ+iπ z̄2 = −e4iϕ z̄2 = −z2,

which implies z2 = 0, then α = η = 0 or, equivalently, I 2
2 = 0. Taking into account defini-

tions (24) and (25), we conclude that for a tetragonal material

c11 = c22,

c23 = −c13,

in any coordinate system. For an orthotropic material, I2 is an invariant measure of the lack
of tetragonality. The larger I2 becomes, the less an orthotropic material is tetragonal.

6.4 Isotropic Material

A tetragonal material for which the isotropy group is O(2) itself is said to be isotropic. Thus
condition (68) leads to z4 = 0, then β = γ = 0 or, equivalently, if I4 = 0. For a tetragonal
material, I4 is an invariant measure of the lack of isotropy. The larger I4 becomes, the less a
tetragonal material is isotropic.
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7 Geometrical Meaning of the Invariant Measures

We would like to discuss the previous invariant measures in terms of Euclidean geometry. It
is easy to interpret I2 in terms of the standard norm of E2:

I 2
2 = ‖ṽ‖2,

and I4 in terms of the standard norm of the space E4 of traceless symmetric matrices Ã:

I 2
4 = 1

8
Tr

(
Ã2

)
,

which are clearly metric notions. The geometric interpretation of ζi is less obvious. For this
aim, let us determine once again at which condition a material is monoclonic. We know that
the reflexion m2ϕ has two eigenspaces, the straight line along the unit vector n2ϕ associated
with the eigenvalue −1, and the perpendicular straight line associated with the eigenvalue 1.
Condition (63) means that ṽ is an eigenvector of m2ϕ associated with the eigenvalue −1. On
the other hand, accounting for the symmetry of matrix m2ϕ , condition (64) implies

Ãṽ = m2ϕÃm2ϕṽ,

which, because of (63) yields

Ãṽ = −m2ϕÃṽ,

which means Ãṽ is an eigenvector of m2ϕ associated with the eigenvalue −1. Thus ṽ and
Ãṽ are collinear. By considering them as vectors of R

3 with the third component null, this
condition may be stated as

∥∥(Ãṽ) × ṽ
∥∥ = 0.

In fact, straightforward calculations show that

ζ 2
i = 1

4

∥∥(Ãṽ) × ṽ
∥∥2

.

In short,

– a material is monoclinic (or orthotropic) if the parallelogram of vertex 0 and adjoining
edges ṽ and Ãṽ becomes flat.

– an orthotropic material is tetragonal if the circular orbit O2 degenerates into a point,
– a tetragonal material is isotropic if the circular orbit O4 degenerates into a point.

The two latter conditions can be expressed in terms of vector lengths, the former one in terms
of area. Hence it is not possible to characterize the lack of symmetry uniquely in terms of
invariant norms and distances in 2D and, even more so, in 3D.

8 Comparing the Invariants for the Actions of Z2, O(2) and SO(2) onto E(2)

8.1 Parameterization of the Orbit Spaces E(2)/Z2,ϕ

The symmetry group of an orthotropic material characterized by the unit vector nϕ is the
cyclic group constituted of the identity and the reflexion mϕ . As it is isomorphic to Z/2Z or,
with abbreviated notation Z2, we denote it Z2,ϕ . Owing to (62), the action of mϕ is
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ṽ′′ = −m2ϕṽ, Ã′′ = m2ϕÃmT
2ϕ,

or, in details,

(
η′′

α′′

)

=
(

cos(4ϕ) sin(4ϕ)

sin(4ϕ) − cos(4ϕ)

)(
η

α

)

,

(
γ ′′

β ′′

)

=
(

cos(8ϕ) sin(8ϕ)

sin(8ϕ) − cos(8ϕ)

)(
γ

β

)

.

Using the complex framework of Sect. 4, the two last relations may be stated as

z′′
2 = e4iϕ z̄2, z′′

4 = e8iϕ z̄4. (70)

Considering z2,ϕ = e−2iϕ z2, a consequence is

z′′
2,ϕ = z̄2,ϕ .

Thus independent invariants of the orbit O2,ϕ of z2 under the action of Z2,ϕ onto E2 are 
z2,ϕ

and (�z2,ϕ)
2, or equivalently 
z2,ϕ and I 2

2 = (
z2,ϕ)
2 + (�z2,ϕ)

2. Similarly, considering
z4,ϕ = e−4iϕ z4, we have z′′

4,ϕ = z̄4,ϕ and independent invariants of the orbit O4,ϕ of z4 under
the action of Z2,ϕ onto E4 are 
z4,ϕ and (�z4,ϕ)

2, or equivalently 
z4,ϕ and I 2
4 = (
z4,ϕ)2 +

(�z4,ϕ)
2.

As the group Z2,ϕ , the orbits are discrete and then defined by the values of six invariants
that can be, for instance, λ,μ, I2, I4,
z2,ϕ and 
z4,ϕ . The generic ones are pair of points
while for the orthotropic materials characterized by the inclination ϕ, �z2,ϕ vanishes and the
orbits are singletons.

8.2 Parameterization of the Orbit Space E(2)/O(2)

A straightforward consequence of the previous analysis is the determination of the invari-
ants of the O(2)-orbits. The orthogonal group is generated by both rotations and reflexions.
The Z2,ϕ-orbits are discrete and in fact contained into the SO(2)-orbits so O(2)-orbits and
SO(2)-orbits are identical, that allows the consideration of only the invariants of the previ-
ous orbits. Nevertheless, it is worth noting that, unlike the action of rotations, ζ defined by
(45) is not invariant for the action of reflexions (70)

ζ ′′ = ζ̄ . (71)

Thus ζr is a common invariant to the rotations and reflexions while in general ζi is not so
because of its sign inversion in the complex conjugacy occurring in (71). A possible coordi-
nate system to parameterize the O(2)-orbits is (λ,μ, I2, I4, ζr ) already introduced in Sect. 5
for parameterizing the SO(2)-orbits. Nevertheless, we show in Sect. 6 that a better coordi-
nate system for parameterizing the SO(2)-orbits is (λ,μ, I2, I4, ζi). Finally, both orbits for
SO(2) and O(2) are the same but the choice of the generators of their respective invariants
depends on the way in which the group acts on the orbit. The subtleness lies in the sign of
ζi which cannot be inferred of the values of I2, I4 and ζr because it occurs into the syzygy
(46) through its square.
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9 Conclusions

In 2D, the elastic tensor space is parameterized by 5 coordinates chosen among 6 invari-
ants. It consists in a 5-dimensional manifold, corresponding to the generic orbits, and a
“boundary” composed of two volumes intersecting following a surface corresponding to the
isotropic elastic tensors. The study is much easier using Kelvin’s representation and the de-
composition into irreductibles. There are 4 primary invariants and a joint one which separate
the orbits and are invariant measures of the lack of symmetry with respect to the symmetry
groups of the elastic tensors. Next, we revealed the physical meaning of these invariants as a
measure of the lack of symmetry with respect to the classes of materials and we proposed an
original method to determine the elastic behaviour of an anisotropic material of which the
symmetry is not known a priori. These measures can be characterized in terms of Euclidean
geometry as length or area. It would be very interesting to compare the present method to
the one proposed by Cowin and coworkers in [10, 11, 43]. In a next future, we hope to
investigate the 3D case with the presently developed tools.
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